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Potential of a 3-Dimensional Charge Distribution 

(Powerful Calculating Method & Its Applications) 

Ken Takayama 

Abstract 

A new expression for the electrical potential for a 
3-dimensional non-uniform charge distribution is obtained. The 
electrical potential is obtained as a limiting case of the general 

solution to the diffusion equation /l/. It is shown how the new 
expression can be used to obtain simple expressions for sample 

charge distribution. 
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1. Introduction 

Instead of solving directly the Poisson equation 

we consider the diffusion equation with a stationary sources 

(l-1) 

(l-2) 

where A' is a diffusion parameter. If the second term zzy 
A at 4 

in the left-hand side of (1-2) vanishes for an arbitrary time in 

the limit A 3 0, the potential q&c) could be obtained fromq(w,t) 

simply by going to the limit A+0 : 

9 C*) = Ah '2trc*,t) (l-3) 
IA+0 . 

2. General Solution 

In order to handle the problem for solutions of the diffusion 

equation, it is necessary to determine the Green's function 

which satisfies the equation 

with boundary condition 

(Z-2) 
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for tl"t or x=00. 

Accordingly we exploit the fact that the delta function can be 

written in terms of orthonormal functins : 

We expand the Green's function in similar fashion : 

Then substitution into (2-l) leads to an equation for (a(%,~): 

Furthermore substituting (2-5) into (2-4), we obtain for G : 

We note that in (2-6) the integration over dud/k can 

directly. First consider the integration over do 
00 

_6. 

,-LJJ(t-T) 

'I(t-Tl = hA’-RZ 
du) 

. 

In order to calculate the integration (2-7), we 

complex integral 

du, (Z-6) 

. 

be performed 

(z-7) 

consider the 
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4 
,&t-q ds (Z-8) 

C i5? A’- RZ 
f 

along a closed contour cosisting of the real axis from -R to R and 

a semicircle 7 or p'as in Fig.1. 

We note that the pole of the integrand of (2-8) occurs at z= -; 

b Fig, 3 Z plane 

on the imaginary axis of z. Let z = Reie . Then 

(2-9) 
. 

When k< "c , from (2-9) the value of the integration along the 

upper semicircle r (0(8(h) vanishes in the limit R+ 00. 

Combining this result and the fact that the integrand is an 

analytical function continuous within and on the smooth closed 

contour including r , then we have 

(2-10) 
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For t7"r 1 the integration along the lower semicircle 

~-"(-x(Q(o) vanishes in the limit R 300 from the similar reason 

to the above case. Here employing calculus of residues, we obtain 

-XL Z: residrte,s 5 
e-;'lt-T) 

l(t- 9) = o 
isA’- IS2 t>r (2-11) 

I 1 

in the lower half plane. If we introduce the notation 

(2-12) 

(2-13) 

From these results, we find 

J 0 +cr I (t-7) = 27t 
TP 

-- 
Aa c 

-,,(t-) t (2-14) 
IL <t 

Accordingly we obtain 
. 

/ 
* i WCt-$)] do t > 'I (2-15) 

. 

BY rearranging the exponent in the integration, it becomes 

possible to evaluate each term of the product exactly. The first 

term may be written 



and by an appropriate change of variable this equals 
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(2-16) 

(2-17) 

In the similar way, remained integrations over dTLdS3 also are 

performed. Introducing these results into the expression (2-15) 

for CTCl,t:k /Cc> we obtain 

0 

The Green's function (2-18) represents heat diffusion from a 

point source 2 =$ at the time t= "1. The one dimensional Green's 

function G(X,T) is plotted in Fig.2 for several values of 

T (St-T). Note that the curve has a sharpe maximum at 

X (sy-$,)=O, and that the width of the curve increases with 

increasing T. The quantity 2 F/A is a measure of this width. At 

T-O there is zero width due to the fact that the heat has just 

been added and is all concentrated at X=0. As T changes from 

zero, the temperature immediately rises everywhere. The most 

pro-nounced rise occurs, of course, near X=0, that is, for 

X12 E/A. 

Thus the general solution to the diffusion equation at a 

point % , assuming a specified source distribution, .is obtained 
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Fig. 2 

> 
X 

as a linear superposition of the effects at X due to point 

sources located at different g's : 

00 00 
qsC*,t) =4x d& 4Cct;k,T)f=(k) (2-19) 

. 

Now we consider the term ,w A -7 in the diffusion equation 

(l-2). Introducing the notation 

and substituting (2-18) into (2-19), we write 

(2-20) 

(2-21) 

By using (2-21), we can eliminate 
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Going to the limit A+ 0, we write 

1641 L c - cK/A’ P(k) da (2-23) 
(/+t /AL)“2 

The bracketed expression, in the integrand vanishes, due to 

exponentials falling off faster than any polynomial. In the limit 

A 30, the diffusion equation (l-2) therefore is equivalent to the 

Poisson equation (l-l). This means that we can take 

(2-24) 
7 

as a solution of the Poisson equation (l-l) : 

d4 PWe IL 

(2-25) 

It will be seen in the following examples how this expression 

(2-25) can be used to obtain simple expressions for (pou). Simple 

in the sense that the usual 3-dimensional integral expression for 

CR 1 * : 

can be reduced to an one-dimensional integral. 
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3. Examples 

In this section, the several cases of a non-uniform charge 

distribution are considered. An exact expression for the 
potential produced by them is derived. We will assume that a 

charge distribution function p(xc) is normalized by means of 

(3-l) 

where N = number of charged particle, and e = unit charge . 

Example (a) Rectangular Distribution. 

1 
PJS 

pee = %ab lY154#l~l<,~, 13l$C 
P 

1 
0 kcI>cl , Ql bb, IPly 

n PCrl 

-9 0 Q  ‘x 

(3-a) 

substitution of (3-a) into (2-25) yields 

The integration of the type. of 
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i 
4 e- Cs-fy- 

T = e df (3-a-2) 
-P P 

is rewitten in terms of the probability or error function Erf(x) 

Changing the integration variable 

yields 

$ / s- e = 
Je- 

For lsl$p , (3-a-5) becomes 

Accordingly we can express the potential c$Qsi) in the form 

(3-a-3) 

(3-a-4) 

f 

. 

(3-a-5) 

(3-a-6) 

(3-a-7) 

for 1x1 S a and lyj =(b and 1~1 2 C. 
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Example (b) Triangular Distribution, 

1x1 >o , 12 I > b, Isl>c (3-b) 
. 

--9 0 9 
Substitution of (3-b) into (Z-25), yields 

. 

As in the previous example, an expression for 

(3-b-2) 

is obtained in terms of the error function. After tedious 

mathematical manipulation including change of the integration 

variable, we obtain 

(3-b-3) 
1 
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for lsl6J ' Combining (3-c-3) and the results of(a), we write 

Thus the potential (3-b-l) is described by 

( .Q = a,b,c, and S,:= x,y,z ). 

Example (c) Gaussian Distribution /2/. 

where a,b,c are standard deviations. 

Substituting (3-c) into (2-25), we have 

(3-c) 
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Integrals of the form 

can be easiiy obtained from the integration formula 

(3-c-2) 

t 1 
12 

e" 
r rt (l-0 > 

(3-c-3) 
d 

For example (3-c-2) becomes 

sL -- e 24'4 
1 

. 

Inserting (3-c-4) into (3-c-l), we have the exact 

the potential of the Gaussian distribution 

. 

(3-c-4) 

expression for 

(3-c-5) 

Example (d) Halo Distribution. 
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Substituting (3-d) into (Z-25), we have 

The space integration over d$ is divided into three parts: 

. 
Integrals of the form 

(3-d-3) 

appearing in (3-d-2) are calculated as follows: 
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Changing the integration variable 

we have 

with 

r= 9’ 
%*A?’ l 

15 

(3-d-4) 

(3-d-5) 

(3-d-6) 

Using the integration formula 

we write each term appearing in (3-d-2) in the form 

(3-d-7) 

(3-d-8) 

(3-d-9) 

Substituting these into (3-d-5), we obtain 
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L (3-d-10) 

Also integrals of the form 

have been obtained in the previous section; i.e. 

(3-d-11) 

(3-d-12) 

Lastly, using (3-d-10) and (3-d-12), we can obtain (3-d-l) as an 

integration over dq alone, 
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The potential of an ellipsoidal charge distribution 

(Sdimensional Gaussian for example) can be obtained by applying 

the traditional method /3/. However the such traditional method 

seems not to be applicable to cases where charge distributions 

don't have spatial symmetry. The advantage of the method 

presented here 

cases, provided 

is that it is applicable even to unsymmetrical 

integrals of the form 

where s; is xIyIz, and 8; is $,, $,, &, 

can be performed. We emphasize this point. 
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